精英家教网 > 高中数学 > 题目详情

已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。

(Ⅰ)依题意,设椭圆C的方程为焦距为,由题设条件知, 所以故椭圆C的方程为 
(Ⅱ)椭圆C的左准线方程为所以点P的坐标,显然直线的斜率存在,所以直线的方程为。如图,设点M,N的坐标分别为线段MN的中点为G

.          ……①
解得.   ……②
因为是方程①的两根,所以,于是
=     .
因为,所以点G不可能在轴的右边,
又直线,方程分别为
所以点在正方形内(包括边界)的充要条件为 
 亦即
解得,此时②也成立.    
故直线斜率的取值范围是

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)椭圆的左、右焦点分别为,直线经过点与椭圆交于两点。
(1)求的周长;
(2)若的倾斜角为,求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求||(T为(1)中的点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线为平面上的动点,过作直线的垂线,垂足为点,且.
(1)求动点的轨迹的方程;
(2)过点的直线交轨迹两点,交直线于点,已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C的方程C:y2 ="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线
OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知椭圆的中心在原点,焦点在y轴上,离心率为,且
椭圆经过圆的圆心C。
(I)求椭圆的标准方程;
(II)设直线与椭圆交于A、B两点,点且|PA|=|PB|,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.
(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?
(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,
请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?

查看答案和解析>>

同步练习册答案