设双曲线C:
-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且
·
=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设
=λ·
,若λ∈[-2,-1],求|
+
|(T为(1)中的点)的取值范围.![]()
科目:高中数学 来源: 题型:解答题
已知抛物线C:
,
为抛物线上一点,
为
关于
轴对称的点,
为坐标原点.(1)若
,求
点的坐标;
(2)若过满足(1)中的点
作直线
交抛物线
于
两点, 且斜率分别为
,且
,求证:直线
过定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为
,直线
的方程为
(t为参数),直线
与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线
被曲线C截得的线段长为2,求直线
的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A、B、C是椭圆
上的三点,其中点A的坐标为
,BC过椭圆m的中心,且![]()
![]()
(1)求椭圆
的方程;
(2)过点
的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且
,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知直线L:
与抛物线C:
,相交于两点
,设点
,
的面积为
.
(Ⅰ)若直线L上与
连线距离为
的点至多存在一个,求
的范围。
(Ⅱ)若直线L上与
连线的距离为
的点有两个,分别记为
,且满足
恒成立,求正数
的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)在直角坐标系
中椭圆
:![]()
的左、右焦点分别为
、
.其中
也是抛物线
:
的焦点,点
为
与
在第一象限的交点,且
.
(1)求
的方程;(6分)
(2)平面上的点
满足
,直线
∥
,且与
交于
、
两点,若
,求直线
的方程. (8分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在
轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与
轴的交点,过点P的直线
与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线
的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
椭圆
的离心率为
分别是左、右焦点,过F1的直线与圆
相切,且与椭圆E交于A、B两点。
(1)当
时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图
2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则
轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐
标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点
,过点
作
轴的垂线,垂足为
,过点
作直线
,交线段
于点
,连接
,使
~
,若存在,求出点
的坐标;若不存在,说明理由.
图1 图2
图3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com