(本小题满分14分)已知直线L:
与抛物线C:
,相交于两点
,设点
,
的面积为
.
(Ⅰ)若直线L上与
连线距离为
的点至多存在一个,求
的范围。
(Ⅱ)若直线L上与
连线的距离为
的点有两个,分别记为
,且满足
恒成立,求正数
的范围.
科目:高中数学 来源: 题型:解答题
(14分)设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.![]()
(Ⅰ)求椭圆
的离心率;
(Ⅱ)D是过
三点的圆上的点,D到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,并且直线
是抛物线
的一条切线。
(1)求椭圆的方程
(2)过点
的动直线
交椭圆
于
、
两点,试问:在直角坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
?若存在求出
的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线C:
-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且
·
=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设
=λ·
,若λ∈[-2,-1],求|
+
|(T为(1)中的点)的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,直线
,
为平面上的动点,过
作直线
的垂线,垂足为点
,且
.
(1)求动点
的轨迹
的方程;
(2)过点
的直线交轨迹
于
,
两点,交直线
于点
,已知
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线
的距离为3。
(1)求椭圆的方程;
(2)设直线
与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
上的任意一点到它两个焦点
的距离之和为
,且它的焦距为2.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线
与椭圆
交于不同两点
,且线段
的中点
不在圆
内,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com