精英家教网 > 高中数学 > 题目详情

已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知抛物线的准线经过双曲线的左焦点,若抛物线与双曲线的一个交点是
(1)求抛物线的方程; (2)求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线
与以点 为圆心,1为半径的圆相切,又知的一个焦点与关于直线
对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于两点,另一直线经过  的中点,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在ABC中,C=90°,AC="b," BC="a," P为三角形内的一点,且
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线的方程为(t为参数),直线与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线被曲线C截得的线段长为2,求直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知直线L:与抛物线C:,相交于两点,设点的面积为.
(Ⅰ)若直线L上与连线距离为的点至多存在一个,求的范围。
(Ⅱ)若直线L上与连线的距离为的点有两个,分别记为,且满足 恒成立,求正数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.

查看答案和解析>>

同步练习册答案