精英家教网 > 高中数学 > 题目详情

如图,在ABC中,C=90°,AC="b," BC="a," P为三角形内的一点,且
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.

以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再分别用两点距离公式即可,(3)将a=2-2b代入s的表达式,得到b的一个二次函数.
当b=0.8时,s最小.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题15分)设抛物线和点,.斜率为的直线与抛物线相交不同的两个点.若点恰好为的中点.
(1)求抛物线的方程,
(2) 抛物线上是否存在异于的点,使得经过点的圆和抛物线处有相同的切线.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线的焦点为,过点的直线交抛物线于两点.
①若,求直线的斜率;
②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线与以
 为圆心,1为半径的圆相切,又知的一个焦点与A关于直线对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于两点,另一直线经过 及的中点,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知长方形,以的中点
原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最
小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,并且直线是抛物线的一条切线。
(1)求椭圆的方程
(2)过点的动直线交椭圆两点,试问:在直角坐标平面上是否存在一个定点,使得以为直径的圆恒过点?若存在求出的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆 ()的一个焦点坐标为,且长轴长是短轴长的倍.
(1)求椭圆的方程;
(2)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.

查看答案和解析>>

同步练习册答案