精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知长方形,以的中点
原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最
小值

解:(1)由题意可得点A、B、C的坐标分别为…………2分
设椭圆的标准方程是
则:,∴……………………4分
∴椭圆的标准方程是…………………6分
(2)设点,则,其中
,其中对称轴是……8分
时,
时,
时,
综上所述:………………………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)求双曲线的焦点坐标,离心率和渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设A1、A2是双曲线的实轴两个端点,P1P2是双曲线的垂直于轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹的方程;
(Ⅱ)过轴的交点Q作直线与(1)中轨迹交于M、N两点,连接FN、FM,其中F,求证:为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在ABC中,C=90°,AC="b," BC="a," P为三角形内的一点,且
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点.
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆为正整数,为常数.曲线在点处的切线方程为.
(Ⅰ)求函数的最大值;
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(1)求椭圆C的方程;
(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆方程为为其左右焦点,点为椭圆上一点,且.
(1)求的面积. (2)直线过点与椭圆交于两点,若为弦的中点,求的方程.

查看答案和解析>>

同步练习册答案