(本小题满分14分)已知长方形
,
,
,以
的中点
为
原点建立如图所示的平面直角坐标系
.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中
,探究
的最
小值
。![]()
科目:高中数学 来源: 题型:解答题
(本题满分16分)
如图,椭圆C:
+
=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点(
,
)在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设A1、A2是双曲线
的实轴两个端点,P1P2是双曲线的垂直于
轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹
的方程;
(Ⅱ)过
与
轴的交点Q作直线与(1)中轨迹
交于M、N两点,连接FN、FM,其中F
,求证:
为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在
ABC中,
C=90°,AC="b," BC="a," P为三角形内的一点,且
,
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│2
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆![]()
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知动直线
与椭圆
相交于
、
两点.
①若线段
中点的横坐标为
,求斜率
的值;
②已知点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的一个顶点与抛物线
的焦点重合,
分别是椭圆的左、右焦点,且离心率
且过椭圆右焦点
的直线
与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)是否存在直线
,使得
.若存在,求出直线
的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MN
AB,求证:
为定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com