已知椭圆方程为,、为其左右焦点,点为椭圆上一点,且,.
(1)求的面积. (2)直线过点与椭圆交于、两点,若为弦的中点,求的方程.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,椭圆:的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为.
(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线:与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆上的动点到焦点距离的最小值为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,为椭圆上一点, 且满足
(为坐标原点),当 时,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知长方形,,,以的中点为
原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最
小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com