(12分)已知椭圆
,过点(m,0)作圆
的切线
交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将
表示为m的函数,并求
的最大值.
(Ⅰ)
(Ⅱ)|AB|的最大值为2.
解析试题分析:(Ⅰ)设椭圆的方程,利用椭圆G经过点P(
),且一个焦点为(-
,0),建立方程,求得几何量,即可求得椭圆G的方程;
(Ⅱ)由题意知,|m|≥1,分类讨论:当m=±1时,|AB|=
;当|m|>1时,设l的方程代入椭圆方程,利用韦达定理,及l与圆x2+y2=1相切,可表示|AB|,利用基本不等式可求最值,从而可得结论.
解:(Ⅰ)由已知得
所以![]()
所以椭圆G的焦点坐标为
离心率为![]()
(Ⅱ)由题意知,
.
当
时,切线
的方程
,点A、B的坐标分别为![]()
此时
当m=-1时,同理可得![]()
当
时,设切线
的方程为![]()
由![]()
设A、B两点的坐标分别为
,则![]()
又由
与圆![]()
所以![]()
![]()
![]()
由于当
时,
所以
.
因为
且当
时,|AB|=2,
所以|AB|的最大值为2.
考点:本题主要考查了椭圆的性质与标准方程,考查直线与椭圆的位置关系,考查弦长的计算,考查韦达定理的运用。
点评:解决该试题的关键是正确的运用韦达定理,同时利用设而不求的思想来得到坐标关系式,结合韦达定理消去参数得到弦长的值,运用函数思想求解其范围。
科目:高中数学 来源: 题型:解答题
填空题(本大题有2小题,每题5分,共10分.请将答案填写在答题卷中的横线上):
(Ⅰ)函数
的最小值为 .
(Ⅱ)若点
在曲线
上,点
在曲线
上,点
在曲线
上,则
的最大值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)点
为椭圆
内的一定点,过P点引一直线,与椭圆相交于
两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
已知椭圆C的两焦点分别为
,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,焦点
在坐标轴上,离心率为
,且过点(4,-
)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:
.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
. (本题满分15分)已知点
,
为一个动点,且直线
的斜率之积为![]()
(I)求动点
的轨迹
的方程;
(II)设
,过点
的直线
交
于
两点,
的面积记为S,若对满足条件的任意直线
,不等式
的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设双曲线
的两个焦点分别为
,离心率为2.
(Ⅰ)求此双曲线的渐近线
的方程;
(Ⅱ)若
、
分别为
上的点,且
,求线段
的中点
的轨迹方程,并说明轨迹是什么曲线;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com