已知双曲线的中心在原点,焦点
在坐标轴上,离心率为
,且过点(4,-
)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:
.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)
(1)
.(2)
。
解析试题分析:(1)根据离心率为
,可知双曲线为等轴双曲线,可设双曲线的方程为
,再根据它过点(4,-
)代入双曲线方程求出参数值,方程确定.
(2)根据点M(3,m)在双曲线上,可求出m值,然后求出
,从而得到
.
(3)因为N(3,1)为弦AB的中点,可利用点差法求得直线的斜率,进而写出点斜式方程.
(1) ∵离心率为
,∴双曲线为等轴双曲线.∵双曲线的中心在原点,焦点
在坐标轴上∴设双曲线的方程为,
,
∵点(4,-
)在双曲线上∴
,
∴双曲线的方程为,
.(2)∵M(3,m)在双曲线上,∴
,
∵
,
,∴![]()
∴
∴
.(3)∵点N(3,1)恰好是弦AB的中点∴有点差法易得
,∴直线AB的方程为![]()
∴ ![]()
考点:双曲线的方程及和性质,直线与双曲线的位置关系.
点评:当知道弦中点时,可利用点差法求得弦所在直线的斜率,写出点斜式方程再化成一般式方程即可.
科目:高中数学 来源: 题型:解答题
如图,已知:椭圆
的中心为
,长轴的两个端点为
,右焦点为
,
.若椭圆
经过点
,
在
上的射影为
,且△
的面积为5.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知圆
:
=1,直线
=1,试证明:当点
在椭圆
上
运动时,直线
与圆
恒相交;并求直线
被圆
截得的弦长的取值范围. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是圆
上的一个动点,过点P作PD垂直于
轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知椭圆
的一个焦点
与抛物线
的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为
的直线
过点
.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为
,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com