精英家教网 > 高中数学 > 题目详情

已知圆,椭圆,若的离心率为,如果相交于两点,且线段恰为圆的直径,求直线与椭圆的方程。

直线方程为,椭圆方程为:

解析试题分析:由,得,
于是椭圆的方程可化为
因为线段恰为圆的直径,所以过圆心,且圆心为的中点,
所以可设直线的方程为
得:       ①
,则,即,得
因此直线的方程为:,即.
此时,①式即为
那么,解得
所以椭圆方程为
故所求的直线方程为,椭圆方程为:.
考点:本小题主要考查由圆的标准方程、椭圆的标准方程和性质、直线与圆锥曲线的位置关系,考查学生的运算求解能力和推理论证能力.
点评:解析几何的本质问题是用代数方法解决几何问题,所以一定要注意函数与方程思想、数形结合思想、转化与划归思想等数学思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆)的离心率,直线与椭圆交于不同的两点,以线段为直径作圆,圆心为
(Ⅰ)求椭圆的方程;
(Ⅱ)当圆轴相切的时候,求的值;
(Ⅲ)若为坐标原点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(4,-)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

. (本题满分15分)已知点为一个动点,且直线的斜率之积为
(I)求动点的轨迹的方程;
(II)设,过点的直线两点,的面积记为S,若对满足条件的任意直线,不等式的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知点的坐标分别为,直线相交于点,且它们的斜率之积是,试讨论点的轨迹是什么。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)抛物线的焦点为,过点的直线交抛物线于两点.
为坐标原点,求证:
②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题分12分)
如图,斜率为1的直线过抛物线的焦点,与抛物线交于两点A、B, 将直线按向量平移得到直线,上的动点,为抛物线弧上的动点.
(Ⅰ) 若 ,求抛物线方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
 

查看答案和解析>>

同步练习册答案