精英家教网 > 高中数学 > 题目详情

(12分)已知点的坐标分别为,直线相交于点,且它们的斜率之积是,试讨论点的轨迹是什么。

(1)当时,的轨迹是圆;
(2)当时,的轨迹是椭圆;
(3)当时,的轨迹是双曲线

解析试题分析:设的坐标为
由直线的斜率之积是,得:,               …6分
所以当时,方程变为,为圆;                      …8分
时,的轨迹是椭圆;                              …10分
时,的轨迹是双曲线.                                           …12分
考点:本小题主要考查了直接法求轨迹方程,并根据参数的范围判断轨迹是什么图形.
点评:掌握好圆、椭圆、双曲线、抛物线等圆锥曲线的标准方程的特点,是解决此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已(12分)知椭圆的中心在坐标原点,离心率为,一个焦点是F(0,1).
(Ⅰ)求椭圆方程;
(Ⅱ)直线过点F交椭圆于A、B两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为的直线过点.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的左,右焦点分别为,过 的直线L与椭圆C相交 A,B于两点,且直线L的倾斜角为,点到直线L的距离为 ,
(1)  求椭圆C的焦距.(2)如果求椭圆C的方程.(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,椭圆,若的离心率为,如果相交于两点,且线段恰为圆的直径,求直线与椭圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,左右焦点分别为
(1)若上一点满足,求的面积;
(2)直线于点,线段的中点为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B.
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于两点,求时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)抛物线上有两点(0为坐标原点)
(1)求证:  (2)若,求AB所在直线方程。

查看答案和解析>>

同步练习册答案