精英家教网 > 高中数学 > 题目详情

已知椭圆,左右焦点分别为
(1)若上一点满足,求的面积;
(2)直线于点,线段的中点为,求直线的方程。

(1).(2)

解析试题分析:(1)由于椭圆定义可以得到,那么根据直角三角形得到,从而得到,得到面积的值。
(2)设出点A,B的坐标,代入椭圆方程中,然后作差,得到AB的斜率与AB的中点坐标关系进而求解。
解:(1)由第一定义,,即
由勾股定理,,所以.
(2)设,满足,两式作差,将代入,得,可得,直线方程为:
考点:本试题主要考查了椭圆的定义以及直线与椭圆的位置关系的综合运用。
点评:解决该试题的关键是根据定义结合直角三角形勾股定理得到三角形的面积的值。并能利用点差法思想得到弦中点与直线的斜率的关系式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设双曲线与直线交于两个不同的点,求双曲线的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为双曲线的左、右焦点.
(Ⅰ)若点为双曲线与圆的一个交点,且满足,求此双曲线的离心率;
(Ⅱ)设双曲线的渐近线方程为到渐近线的距离是,过的直线交双曲线于A,B两点,且以AB为直径的圆与轴相切,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知点的坐标分别为,直线相交于点,且它们的斜率之积是,试讨论点的轨迹是什么。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知,且点A和点B都在椭圆内部,
(1)请列出有序数组的所有可能结果;
(2)记“使得成立的”为事件A,求事件A发生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)抛物线的焦点为,过点的直线交抛物线于两点.
为坐标原点,求证:
②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.
(Ⅰ)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线与椭圆交于两点,已知,若且椭圆的离心率,又椭圆经过点为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案