直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
科目:高中数学 来源: 题型:解答题
已知P为曲线C上任一点,若P到点F的距离与P到直线距离相等
(1)求曲线C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点A、B,
(I)若,求直线l的方程;
(II)试问在x轴上是否存在定点E(a,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(1)若过三点的圆恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆的焦点分别为,且过点.
(1)求椭圆的标准方程;
(2)设为椭圆内一点,直线交椭圆于两点,且为线段的中点,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com