精英家教网 > 高中数学 > 题目详情

直线与椭圆交于两点,已知,若且椭圆的离心率,又椭圆经过点为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

(Ⅰ)(Ⅱ)(Ⅲ)三角形的面积为定值。证明见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆,左右焦点分别为
(1)若上一点满足,求的面积;
(2)直线于点,线段的中点为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点与平面上两定点连线的斜率的积为定
.
(1)求动点的轨迹方程;(2)设直线与曲线交于两点,当||=时,求直线的方程. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)抛物线上有两点(0为坐标原点)
(1)求证:  (2)若,求AB所在直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线3x2-y2=3,过点P(2,1)作一直线交双曲线于A、B两点,若P为
AB的中点,
(1)求直线AB的方程;
(2)求弦AB的长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知P为曲线C上任一点,若P到点F的距离与P到直线距离相等
(1)求曲线C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点A、B,
(I)若,求直线l的方程;
(II)试问在x轴上是否存在定点E(a,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为
(1)设为参数,求椭圆的参数方程;
(2)点是椭圆上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(1)若过三点的圆恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的焦点分别为,且过点
(1)求椭圆的标准方程;
(2)设为椭圆内一点,直线交椭圆两点,且为线段的中点,求直线的方程.

查看答案和解析>>

同步练习册答案