(本小题10分)选修4—4:坐标系与参数方程设椭圆
的普通方程为![]()
(1)设
为参数,求椭圆
的参数方程;
(2)点
是椭圆
上的动点,求
的取值范围.
科目:高中数学 来源: 题型:解答题
(12分)在平面直角坐标系
O
中,直线
与抛物线
=2
相交于A、B两点.
(Ⅰ)求证:命题“如果直线
过点T(3,0),那么
=3”是真命题;
(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,椭圆
为![]()
(1)若一直线与椭圆
交于两不同点
,且线段
恰以点
为中点,求直线
的方程;
(2)若过点
的直线
(非
轴)与椭圆
相交于两个不同点
试问在
轴上是否存在定点
,使
恒为定值
?若存在,求出点
的坐标及实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直线
与椭圆
交于
,
两点,已知![]()
,![]()
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线
过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:
的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为
轴,短轴所在直线为
轴,建立平面直角坐标系,如图所示:![]()
(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。
(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(1)证明:直线
的斜率互为相反数;
(2)求
面积的最小值;
(3)当点
的坐标为
,
且
.根据(1)(2)推测并回答下列问题(不必说明理由):①直线
的斜率是否互为相反数? ②
面积的最小值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,
是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问
是否为定值,若是,求出定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角. ![]()
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com