精英家教网 > 高中数学 > 题目详情

如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.

(Ⅰ)
……………2分

……………4分
(Ⅱ)

        ……………6分
        ……………8分

    ……………12分
         
 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动点与平面上两定点连线的斜率的积为定
.
(1)求动点的轨迹方程;(2)设直线与曲线交于两点,当||=时,求直线的方程. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为
(1)设为参数,求椭圆的参数方程;
(2)点是椭圆上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(1)若过三点的圆恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点轴上,且焦距为,实轴长为4
(Ⅰ)求椭圆的方程;
(Ⅱ)在椭圆上是否存在一点,使得为钝角?若存在,求出点的横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分) 如图,椭圆C: x2+3y2=3b(b>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若b=1,AB是椭圆C上两点,且| AB | =,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;
(2)求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的焦点分别为,且过点
(1)求椭圆的标准方程;
(2)设为椭圆内一点,直线交椭圆两点,且为线段的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

极坐标方程表示的图形是(    )

A.两个圆 B.一个圆和一条直线
C.一个圆和一条射线 D.一条直线和一条射线

查看答案和解析>>

同步练习册答案