(本题满分15分) 如图,椭圆C: x2+3y2=3b2 (b>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若b=1,A,B是椭圆C上两点,且| AB | =,求△AOB面积的最大值.
(Ⅰ)解:由x2+3y2=3b2 得,
所以e====.
(Ⅱ)解:设A(x1,y1),B(x2,y2),△ABO的面积为S.
如果AB⊥x轴,由对称性不妨记A的坐标为(,),此时S==;
如果AB不垂直于x轴,设直线AB的方程为y=kx+m,
由 得x2+3(kx+m) 2=3,
即 (1+3k2)x2+6kmx+3m2-3=0,又Δ=36k2m2-4(1+3k2) (3m2-3)>0,
所以 x1+x2=-,x1x2=,
(x1-x2)2=(x1+x2)2-4 x1x2=, ①
由 | AB |=及 | AB |=得
(x1-x2)2=, ②
结合①,②得m2=(1+3k2)-.又原点O到直线AB的距离为,
所以S=,
因此S2==[-]=[-(-2)2+1]
=-(-2)2+≤,
故S≤.当且仅当=2,即k=±1时上式取等号.又>,故S max=.
解析
科目:高中数学 来源: 题型:解答题
在直角坐标系上取两个定点,再取两个动点,且.
(Ⅰ)求直线与交点的轨迹的方程;
(Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分) 设抛物线C1:x2=4y的焦点为F,曲线C2与C1关于原点对称.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C:(a〉b>0)的左焦点为,椭圆过点P()
(1)求椭圆C的方程;
(2)已知点D(l,0),直线l:与椭圆C交于A、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点形成轨迹.
(1)求轨迹的方程;
(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知椭圆,的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切。
、求椭圆的方程;
、过点的直线(斜率存在时)与椭圆交于、两点,设为椭圆与轴负半轴的交点,且,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线和的交点且
为钝角.
(1)求曲线和的方程;
(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com