(本题满分15分) 如图,椭圆C: x2+3y2=3b2 (b>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若b=1,A,B是椭圆C上两点,且| AB | =
,求△AOB面积的最大值.![]()
(Ⅰ)解:由x2+3y2=3b2 得
,
所以e=
=
=
=
.
(Ⅱ)解:设A(x1,y1),B(x2,y2),△ABO的面积为S.
如果AB⊥x轴,由对称性不妨记A的坐标为(
,
),此时S=
=
;
如果AB不垂直于x轴,设直线AB的方程为y=kx+m,
由
得x2+3(kx+m) 2=3,
即 (1+3k2)x2+6kmx+3m2-3=0,又Δ=36k2m2-4(1+3k2) (3m2-3)>0,
所以 x1+x2=-
,x1x2=
,
(x1-x2)2=(x1+x2)2-4 x1x2=
, ①
由 | AB |=
及 | AB |=
得
(x1-x2)2=
, ②
结合①,②得m2=(1+3k2)-
.又原点O到直线AB的距离为
,
所以S=![]()
,
因此S2=![]()
=
[
-
]=
[-
(
-2)2+1]
=-
(
-2)2+
≤
,
故S≤
.当且仅当
=2,即k=±1时上式取等号.又
>
,故S max=
.
解析
科目:高中数学 来源: 题型:解答题
在直角坐标系
上取两个定点
,再取两个动点![]()
,且
.
(Ⅰ)求直线
与
交点的轨迹
的方程;
(Ⅱ)已知点
(
)是轨迹
上的定点,
是轨迹
上的两个动点,如果直线
的斜率
与直线
的斜率
满足
,试探究直线
的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分) 设抛物线C1:x2=4y的焦点为F,曲线C2与C1关于原点对称.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,
是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问
是否为定值,若是,求出定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C:
(a〉b>0)的左焦点为
,椭圆过点P(
)
(1)求椭圆C的方程;
(2)已知点D(l,0),直线l:
与椭圆C交于A、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在圆![]()
上任取一点
,过点
作
轴的垂线段
,
为垂足.当点
在圆上运动时,线段
的中点
形成轨迹
.
(1)求轨迹
的方程;
(2)若直线
与曲线
交于
两点,
为曲线
上一动点,求
面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知椭
圆
,
的离心率为
,直线
与以
原点为圆心,以椭圆
的短半轴长为半径的圆相切。
、求椭圆
的方程;
、过点
的直线
(斜率存在时)与椭圆
交于
、
两点,设
为椭圆
与
轴负半轴的交点,且
,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角. ![]()
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com