精英家教网 > 高中数学 > 题目详情

(12分)已知椭的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切。
、求椭圆的方程;
、过点的直线(斜率存在时)与椭圆交于两点,设为椭圆轴负半轴的交点,且,求实数的取值范围。

(1)    (2)时, 
时, ①,取中点 由    得 ②

综上,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知P为曲线C上任一点,若P到点F的距离与P到直线距离相等
(1)求曲线C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点A、B,
(I)若,求直线l的方程;
(II)试问在x轴上是否存在定点E(a,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分) 如图,椭圆C: x2+3y2=3b(b>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若b=1,AB是椭圆C上两点,且| AB | =,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的焦点分别为,且过点
(1)求椭圆的标准方程;
(2)设为椭圆内一点,直线交椭圆两点,且为线段的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知A(1,1)是椭圆)上一点,F1­,F2
 
是椭圆上的两焦点,且满足 .
(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为  ,若存在常数 使/,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.
(1)求椭圆C的标准方程;
(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

极坐标方程表示的曲线为(    )

A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知斜率为1的直线 过椭圆的右焦点,交椭圆于两点,求

查看答案和解析>>

同步练习册答案