精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点轴上,且焦距为,实轴长为4
(Ⅰ)求椭圆的方程;
(Ⅱ)在椭圆上是否存在一点,使得为钝角?若存在,求出点的横坐标的取值范围;若不存在,请说明理由.

(Ⅰ)设椭圆方程为:,依题意得:a =" 2" ,c = ,所以b = 1
所以椭圆方程为    ……………5分
(Ⅱ)假设存在,设(x,y).则因为为钝角,所以

又因为点在椭圆上,所以
联立两式得:化简得:
解得:,所以存在。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;
(2)求证以ON为直径的圆与直线相切;
(3)求线段MN的长(用表示),并证明M、N两
点到直线的距离之和等于线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为轴,短轴所在直线为轴,建立平面直角坐标系,如图所示:

(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。
(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,点关于轴的对称点为,直线过点交抛物线于两点.
(1)证明:直线的斜率互为相反数; 
(2)求面积的最小值;
(3)当点的坐标为.根据(1)(2)推测并回答下列问题(不必说明理由):①直线的斜率是否互为相反数? ②面积的最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;   
(2)求点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)如图,设抛物线的准线与x轴交于点,
焦点为为焦点,离心率为的椭圆与抛物线在x轴上方的交点为P
,延长交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动。
1)当m=3时,求椭圆的标准方程;
2)若且P点横坐标为,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.
(1)求椭圆的方程;
(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.

查看答案和解析>>

同步练习册答案