已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.
(1)求椭圆的方程;
(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.
科目:高中数学 来源: 题型:解答题
(本题满分15分 )已知椭圆经过点,一个焦点是.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,且焦距为,实轴长为4
(Ⅰ)求椭圆的方程;
(Ⅱ)在椭圆上是否存在一点,使得为钝角?若存在,求出点的横坐标的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知点是圆上任意一点,点与点关于原点对称。线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)斜率为的直线与曲线交于两点,若(为坐标原点),试求直线在轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点.
(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com