精英家教网 > 高中数学 > 题目详情


解:(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1.
又椭圆的焦点在x轴上, ∴椭圆的标准方程为
(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),
,得
由,点P在椭圆上,得,
∴线段PA中点M的轨迹方程是

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为
(1)设为参数,求椭圆的参数方程;
(2)点是椭圆上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;
(2)求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的焦点分别为,且过点
(1)求椭圆的标准方程;
(2)设为椭圆内一点,直线交椭圆两点,且为线段的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:为抛物线上一点关于轴对称的点,为坐标原点.
(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知A(1,1)是椭圆)上一点,F1­,F2
 
是椭圆上的两焦点,且满足 .
(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为  ,若存在常数 使/,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)双曲线 (a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线 的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

极坐标方程表示的图形是(    )

A.两个圆 B.一个圆和一条直线
C.一个圆和一条射线 D.一条直线和一条射线

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为(  )

A.θ=0(ρ∈R)和ρcos θ=2
B.θ(ρ∈R)和ρcos θ=2
C.θ(ρ∈R)和ρcos θ=1
D.θ=0(ρ∈R)和ρcos θ=1

查看答案和解析>>

同步练习册答案