精英家教网 > 高中数学 > 题目详情

(12分)双曲线 (a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线 的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.



即4e-25e+25≤0.                   ……10分
解不等式,得≤e≤5.
由于e>1>0
,所以e的取值范围是.       ……12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线,点关于轴的对称点为,直线过点交抛物线于两点.
(1)证明:直线的斜率互为相反数; 
(2)求面积的最小值;
(3)当点的坐标为.根据(1)(2)推测并回答下列问题(不必说明理由):①直线的斜率是否互为相反数? ②面积的最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;   
(2)求点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.
(1)求双曲线C的方程;
(2)若直线lykx+与双曲线C左支交于AB两点,求k的取值范围;
(3)在(2)的条件下,线段AB的垂直平分线l0y轴交于M(0,m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知离心率为的椭圆上的点到
左焦点的最长距离为
(1)求椭圆的方程;
(2)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)如图,设抛物线的准线与x轴交于点,
焦点为为焦点,离心率为的椭圆与抛物线在x轴上方的交点为P
,延长交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动。
1)当m=3时,求椭圆的标准方程;
2)若且P点横坐标为,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

过点且平行于极轴的直线的极坐标方程是(  )

A.ρcosθ=4B.ρsinθ=4 C.ρsinθ=D.ρcosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.

查看答案和解析>>

同步练习册答案