已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;![]()
(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,
是抛物线![]()
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.(Ⅰ)求抛物线
的方程;(Ⅱ)是否存在点
,使得直线
与抛物线
相切于点
若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知点
是圆
上任意一点,点
与点
关于原点对称。线段
的中垂线
分别与
交于
两点.
(1)求点
的轨迹
的方程;
(2)斜率为
的直线
与曲线
交于
两点,若
(
为坐标原点),试求直线
在
轴
上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:
,
为抛物线上一点
,
为
关于
轴对称的点,
为坐标原点.
(1)若
,求
点的坐标;
(2)若过满足
(1)中的点
作直线
交抛物线
于
两点, 且斜率分别为
,且
,求证:直线
过定点,并求出该定点坐标
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
根据我国汽车制造的现实情况,一般卡车高3 m,宽1.6 m.现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m的距离行驶.已知拱口AB宽恰好是拱高OC的4倍,若拱宽为a m,求能使卡车安全通过的a的最小整数值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)双曲线
(a>1,b>0)的焦距为2c,直线
过点(a,0)和(0,b),且点(1,0)到直线
的距离与点(-1,0)到直线
的距离之和s≥
c.求双曲线的离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆
过点A(a,0),B(0,b)的直
线倾斜角为
,原点到该直线的距离为
.
(1)求椭圆的方程;
(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若
求直线MN的方程;
(3)是否存在实数k,使直线
交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
曲线C1的极坐标方程为
曲线C2的参数方程为
(
为参数),以极点为原点,极轴为
轴正半轴建立平面直角坐标系,则曲线C1上的点与曲线C2上的点最近的距离为
| A.2 | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com