(12分)在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.
(Ⅰ)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
(1)见解析
(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).”该命题是假命题.
解析试题分析:(I)直线方程与抛物线方程联立,消去x后利用韦达定理判断=x1x2+y1y2=的值是否为3,从而确定此命题是否为真命题.
(II)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.
证明:(1)解法一:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).
当直线l的钭率不存在时,直线l的方程为x=3,此时,直线l与抛物线相交于
A(3,)、B(3,-),∴=3.
当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.
得ky2-2y-6k=0,则y1y2=-6. 又∵x1=y12, x2=y22,
∴=x1x2+y1y2=="3." 综上所述, 命题“......”是真命题.
解法二:设直线l的方程为my=x-3与y2="2x" 联立得到y2-2my-6=0 =x1x2+y1y2
=(my1+3) (my2+3)+ y1y2=(m2+1) y1y2+3m(y1+y2)+9=(m2+1)× (-6)+3m×2m+9=3
(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).”该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1),此时=3,
直线AB的方程为y= (x+1),而T(3,0)不在直线AB上.
考点:四种命题之间的关系,直线与抛物线的位置关系,向量的数量积.
点评:本小题本质是以四种命题的关系为知识载体主要考查直线与抛物线的位置关系.由抛物线y2=2x上的点A(x1,y1)、B(x2,y2)满足,可得y1y2=-6.或y1y2=2,如果y1y2=-6,可证得直线AB过点(3,0);如果y1y2="2," 可证得直线AB过点(-1,0),而不过点(3,0).
科目:高中数学 来源: 题型:解答题
(本题满分12分) 已知均在椭圆上,直线分别过椭圆的左、右焦点当时,有
(1)求椭圆的方程
(2)设是椭圆上的任一点,为圆的任一条直径,求的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的左,右焦点分别为,过 的直线L与椭圆C相交 A,B于两点,且直线L的倾斜角为,点到直线L的距离为 ,
(1) 求椭圆C的焦距.(2)如果求椭圆C的方程.(12分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B.
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于两点,求时,直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com