双曲线
的离心率为2,坐标原点到直线AB的距离为
,其中A
,B
.
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在
轴正半轴上的端点,过B1作直线与双曲线交于
两点,求
时,直线
的方程.
科目:高中数学 来源: 题型:解答题
(12分)抛物线
的焦点为
,过点
的直线交抛物线于
,
两点.
①
为坐标原点,求证:
;
②设点
在线段
上运动,原点
关于点
的对称点为
,求四边形
面积的最小值..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)在平面直角坐标系
O
中,直线
与抛物线
=2
相交于A、B两点.
(Ⅰ)求证:命题“如果直线
过点T(3,0),那么
=3”是真命题;
(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知顶点在坐标原点,焦点在
轴正半轴的抛物线上有一点
,
点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设
为抛物线上的一个定点,过
作抛物线的两条互相垂直的弦
,
,求证:
恒过定点
.(3)直线
与抛物线交于
,
两点,在抛物线上是否存在点
,使得△
为以
为斜边的直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A
、B
、C
三点,过坐标原点O的直线
与抛物线交于M、N两点.分别过点C、D
作平行于
轴的直线
、
.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线
相切;(3)求线段MN的长(用
表示),并证明M、N两点到直线
的距离之和等于线段MN的长.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系
上取两个定点
,再取两个动点![]()
,且
.
(Ⅰ)求直线
与
交点的轨迹
的方程;
(Ⅱ)已知点
(
)是轨迹
上的定点,
是轨迹
上的两个动点,如果直线
的斜率
与直线
的斜率
满足
,试探究直线
的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角. ![]()
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com