精英家教网 > 高中数学 > 题目详情

. (本题满分15分)已知点为一个动点,且直线的斜率之积为
(I)求动点的轨迹的方程;
(II)设,过点的直线两点,的面积记为S,若对满足条件的任意直线,不等式的最小值。

(I)(II)

解析试题分析:(I)设动点P的坐标为
由条件得  即
所以动点的轨迹的方程为                      ……6分
(II)设点的坐标分别是
当直线
所以
所以
当直线
                    ……8分
所以
所以
因为
所以
综上所述                                   ……12分
因为恒成立
恒成立
由于所以
所以恒成立,所以                    ……15分
考点:本小题主要考查轨迹方程的求法、直线与椭圆的位置关系、向量的运算和恒成立问题,考查学生运算求解的基本技能、推理论证能力和数形结合思想.
点评:这是一道直线与圆锥曲线的综合题目,求轨迹方程时,不要忘记限制条件;设直线方程时,不要忘记考虑斜率存在与不存在两种可能,总之思路一定要细致,解题步骤一定要严谨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线过点
(I)求抛物线的方程;
(II)已知圆心在轴上的圆过点,且圆在点的切线恰是抛物线在点的切线,求圆的方程;
(Ⅲ)如图,点轴上一点,点是点关于原点的对称点,过点作一条直线与抛物线交于两点,若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

点P是圆上的一个动点,过点P作PD垂直于轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆,过点(m,0)作圆的切线交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为的直线过点.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(理科)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,交直线于点,且,,
求证:为定值,并计算出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,椭圆,若的离心率为,如果相交于两点,且线段恰为圆的直径,求直线与椭圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为

(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程. 

查看答案和解析>>

同步练习册答案