设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(1)求椭圆C的方程;
(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知长方形,,,以的中点为
原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最
小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆 ()的一个焦点坐标为,且长轴长是短轴长的倍.
(1)求椭圆的方程;
(2)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点 在直线上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
于A、B两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有成
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com