设椭圆
的一个顶点与抛物线
的焦点重合,
分别是椭圆的左、右焦点,且离心率
且过椭圆右焦点
的直线
与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)是否存在直线
,使得
.若存在,求出直线
的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MN
AB,求证:
为定值
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知长方形
,
,
,以
的中点
为
原点建立如图所示的平面直角坐标系
.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中
,探究
的最
小值
。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
?若存在,求出m的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(
)的一个焦点坐标为
,且长轴长是短轴长的
倍.
(1)求椭圆
的方程;
(2)设
为坐标原点,椭圆
与直线
相交于两个不同的点
,线段
的中点为
,若直线
的斜率为
,求△
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点
在直线
上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线
截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
椭圆
的离心率
,过右焦点![]()
的直线
与椭圆
相交
于A、B两点,当直线
的斜率为1时,坐标原点
到直线
的距离为![]()
⑴求椭圆C的方程;
⑵椭圆C上是否存在点
,使得当直线
绕点
转到某一位置时,有
成
立?若存在,求出所有满足条件的点
的坐标及对应的直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com