精英家教网 > 高中数学 > 题目详情

已知椭圆 ()的一个焦点坐标为,且长轴长是短轴长的倍.
(1)求椭圆的方程;
(2)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.

解:(Ⅰ)题意得,         
,所以.                         
所以椭圆的方程为.                                ………………4分
(Ⅱ)设
联立 消去……(*),   ………………6分
解得,所以
所以,            ………………8分
因为直线的斜率为,所以
解得(满足(*)式判别式大于零).                     ………………10分
到直线的距离为
,                             
所以△的面积为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在ABC中,C=90°,AC="b," BC="a," P为三角形内的一点,且
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图2,建立平面直角坐标系轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线中心在原点,焦点坐标是,并且双曲线的离心率为
(1)求双曲线的方程;
(2)椭圆以双曲线的焦点为顶点,顶点为焦点,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(1)求椭圆C的方程;
(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线的焦点为其一个焦点,以双曲线的焦点为顶点。
(1)求椭圆的标准方程;
(2)已知点,且分别为椭圆的上顶点和右顶点,点是线段上的动点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的焦点分别为,直线轴于点,且

(1)试求椭圆的方程;
(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在极坐标系中,圆的垂直于极轴的两条切线方程分别为(    ).

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案