精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线的焦点为其一个焦点,以双曲线的焦点为顶点。
(1)求椭圆的标准方程;
(2)已知点,且分别为椭圆的上顶点和右顶点,点是线段上的动点,求的取值范围。

解:(1)抛物线的焦点,双曲线的焦点…2分
∴可设椭圆的标准方程为,由已知有,且……3分
,∴椭圆的标准方程为。……………………………5分
(2)设,线段方程为,即…………7分
是线段上,∴
,∴,………10分
代入得
………………………12分
,∴的最大值为24,的最小值为
的取值范围是。……………………………………………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆 ()的一个焦点坐标为,且长轴长是短轴长的倍.
(1)求椭圆的方程;
(2)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点  在直线上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线方程为,过点的直线AB交抛物线于点,若线段的垂直平分线交轴于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 (本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
AB两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且
(1)求圆和抛物线C的方程;
(2)若为抛物线C上的动点,求的最小值;
(3)过上的动点Q向圆作切线,切点为S,T,
求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在极坐标系中与圆相切的一条直线的方程为(   )

A. B.
C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.

查看答案和解析>>

同步练习册答案