精英家教网 > 高中数学 > 题目详情

设椭圆为正整数,为常数.曲线在点处的切线方程为.
(Ⅰ)求函数的最大值;
(Ⅱ)证明:.

(Ⅰ)上最大值为
(Ⅱ)证明略

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分) 已知抛物线与直线相交于两点.
(1)求证:以为直径的圆过坐标系的原点;(2)当的面积等于时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知长方形,以的中点
原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最
小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C:2x2-y2=2与点P(1,2).求过点P(1,2)的直线l的斜率k的取值范围,使l与C只有一个交点;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,并且直线是抛物线的一条切线。
(1)求椭圆的方程
(2)过点的动直线交椭圆两点,试问:在直角坐标平面上是否存在一个定点,使得以为直径的圆恒过点?若存在求出的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 (本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
AB两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.

查看答案和解析>>

同步练习册答案