精英家教网 > 高中数学 > 题目详情

(本小题满分13分) 已知抛物线与直线相交于两点.
(1)求证:以为直径的圆过坐标系的原点;(2)当的面积等于时,求的值.

(1)见解析(2)

解析试题分析:(1)证明:由方程组,消去整理得:
,由韦达定理得:
在抛物线上,∴.
,∴OA⊥OB.
故以为直径的圆过坐标系的原点.                                         ……6分
(2)解:设直线与轴交于,又显然,∴令,即(-1,0).

,解得.           ……13分
考点:本小题综合考查了直线与抛物线的位置关系、弦长公式及圆、三角形面积公式,考查了学生数形结合思想和划归思想及运算求解能力.
点评:直线与圆锥曲线的相交问题一般是联立方程组,设而不求,借助根的判别式及根与系数的关系进行转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知双曲线的离心率为,且过点P().
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A,B,且  
(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)求双曲线的焦点坐标,离心率和渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是双曲线的两个焦点,点在双曲线上,且
,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知动圆与直线相切,且与定圆 外切,求动圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设A1、A2是双曲线的实轴两个端点,P1P2是双曲线的垂直于轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹的方程;
(Ⅱ)过轴的交点Q作直线与(1)中轨迹交于M、N两点,连接FN、FM,其中F,求证:为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆为正整数,为常数.曲线在点处的切线方程为.
(Ⅰ)求函数的最大值;
(Ⅱ)证明:.

查看答案和解析>>

同步练习册答案