已知椭圆的中心在原点,焦点为F1
,F2(0,
),且离心率
。
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
为
,求直线l的斜率的取值范围。
科目:高中数学 来源: 题型:解答题
(本小题14分)已知直线
经过椭圆
的左顶点A和上顶点D,椭圆
的右顶点为
,点
是椭圆
上位于
轴上方的动点,直线
与直线
分别交于
两点。![]()
(I)求椭圆
的方程;
(Ⅱ)求线段
的长度的最小值;
(Ⅲ)当线段
的长度最小时,在椭圆
上是否存在这样的点
,使得
的面积为
?若存在,确定点
的个数,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在
轴上的双曲线
的两条渐近线过坐标原点,且两条渐近线与以
点
为圆心,1为半径的圆相切,又知
的一个焦点与A关于直线
对称.
(1)求双曲线
的方程;
(2)设直线
与双曲线
的左支交于
,
两点,另一直线
经过
及
的中点,求直线
在
轴上的截距
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,并且直线
是抛物线
的一条切线。
(1)求椭圆的方程
(2)过点
的动直线
交椭圆
于
、
两点,试问:在直角坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
?若存在求出
的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,直线
,
为平面上的动点,过
作直线
的垂线,垂足为点
,且
.
(1)求动点
的轨迹
的方程;
(2)过点
的直线交轨迹
于
,
两点,交直线
于点
,已知
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
上的任意一点到它两个焦点
的距离之和为
,且它的焦距为2.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线
与椭圆
交于不同两点
,且线段
的中点
不在圆
内,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com