精英家教网 > 高中数学 > 题目详情

已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.

(1)(2)t∈(-2,4)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交椭圆于A、B两个不同点。
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l:  y="x-2" 与抛物线y2=2x相交于两点A、B,
(1)求证:OA⊥OB
(2)求线段AB的长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)椭圆的左、右焦点分别为,直线经过点与椭圆交于两点。
(1)求的周长;
(2)若的倾斜角为,求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知椭圆,斜率为的直线交椭圆两点,且点在直线的上方,
(1)求直线轴交点的横坐标的取值范围;
(2)证明:的内切圆的圆心在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求||(T为(1)中的点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C的方程C:y2 ="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线
OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线  
(1)求以为中点的弦所在的直线的方程
(2)求过的弦的中点的轨迹方程

查看答案和解析>>

同步练习册答案