已知抛物线C的方程C:y2 ="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线
OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由
科目:高中数学 来源: 题型:解答题
已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且
(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)在直角坐标系中椭圆:的左、右焦点分别为、.其中也是抛物线:的焦点,点为与在第一象限的交点,且.
(1)求的方程;(6分)
(2)平面上的点满足,直线∥,且与交于、两点,若,求直线的方程. (8分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。
(1)当时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
3 | 2 | 4 | ||
0 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com