精英家教网 > 高中数学 > 题目详情

已知抛物线C的方程C:y2 ="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线
OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由

解:(Ⅰ)将(1,-2)代入,所以.    ………………1’
故所求的抛物线C的方程为,其准线方程为.…………5’
(Ⅱ)假设存在符合题意的直线l,其方程为y=-2x + t ,…………………6’
,得y2+2 y -2 t =0.……………………7’
因为直线l与抛物线C有公共点,所以得Δ="4+8" t≥0,解得t≥.…………9’
另一方面,由直线OA与l的距离d=,可得,解得t=±1.………10’
因为-1 ,1∈
所以符合题意的直线l存在,其方程为2x+y-1 =0.……………………12’

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)在直角坐标系中椭圆的左、右焦点分别为.其中也是抛物线的焦点,点在第一象限的交点,且.
(1)求的方程;(6分)
(2)平面上的点满足,直线,且与交于两点,若,求直线的方程. (8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。
(1)当时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:


3
2
4



0
4

(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

标准方程下的椭圆的短轴长为,焦点,右准线轴相交于点,且,过点的直线和椭圆相交于点.
(1)求椭圆的方程和离心率;
(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(18分)已知椭圆C:,在曲线C上是否存在不同两点A、B关于直线(m为常数)对称?若存在,求出满足的条件;若不存在,说明理由。

查看答案和解析>>

同步练习册答案