精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。
(1)当时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。

解:由椭圆E:)的离心率为,可设椭圆E:
根据已知设切线AB为:
(Ⅰ)圆的圆心到直线的距离为

∴切线AB为:
联立方程:

∴椭圆E的方程为:。……………………………9分
(Ⅱ)由(Ⅰ)得,AB的中点
故弦AB的中点轨迹方程为。………13分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求||(T为(1)中的点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C的方程C:y2 ="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线
OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求过点,且与椭圆有相同焦点的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若曲线 (为参数) 与曲线相交于,两点,则的值为(     ).

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.
(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?
(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,
请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线  
(1)求以为中点的弦所在的直线的方程
(2)求过的弦的中点的轨迹方程

查看答案和解析>>

同步练习册答案