精英家教网 > 高中数学 > 题目详情

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

(Ⅰ)取的AB中点H,连接DH,易证BH∥CD,且BD=CD …(1分)
所以四边形BHDC为平行四边形,所以BC∥DH
所以∠PDH为PD与BC所成角…(2分)
因为四边形,ABCD为直角梯形,且∠ABC=45°,所以⊥DA⊥AB
又因为AB=2DC=2,所以AD=1,因为Rt△PAD、Rt△DAH、Rt△PAH都为等腰直角三角形,
所以PD=DH=PH=,故∠PDH=60°…(4分)
(Ⅰ)连接CH,则四边形ADCH为矩形,∴AH=DC 又AB=2,∴BH=1
在Rt△BHC中,∠ABC=45°,∴CH=BH=1,CB=∴AD=CH=1,AC=
∴AC2+BC2=AB2∴BC⊥AC…(6分) 又PA平面ABCD∴PA⊥BC …(7分)
∵PA∩AC=A∴BC⊥平面PAC …(8分)
(Ⅲ)如图,分别以AD、AB、AP为x轴,y轴,z轴
建立空间直角坐标系,则由题设可知:
A(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0),
=(0,0,1),=(1,1,-1)…(9分)
设m=(a,b,c)为平面PAC的一个法向量,则,即
设a=1,则b=-1,∴m=(1,-1,0)…(10分)
同理设n=(x,y,z) 为平面PCD的一个法向量,求得n=(1,1,1)…(11分)

所以二面角A-PC-D为60°…(12分)
分析:(1)取的AB中点H,易证∠PDH为PD与BC所成角,解三角形可得;
(2)由已知结合线面垂直的判定可得:
(3)坐标法求得平面的法向量,由向量的夹角可得二面角的大小.
点评:本题考查立体几何的综合问题,涉及线面角,线面垂直和二面角,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=
12
AB,E是PB的中点.
(Ⅰ)求证:EC∥平面PAD;
(Ⅱ)求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=∠ABC=
π2
,且AB=BC=2AD=2,侧面PAB⊥底面ABCD,△PAB是等边三角形.
(1)求证:BD⊥PC;
(2)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的余弦值;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的大小;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

同步练习册答案