精英家教网 > 高中数学 > 题目详情
设ab≠0, a2+b2=1, 如果x=, y=,  z=,则x、y、z的大小关系是

[  ]

A.x<y<z  B.y<z<x  C.y<x<z  D.z<x<y

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设AB是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x轴的一条弦,AB所在直线的方程为x=m(|m|<a且m≠0),P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=
a2
m
于两点Q、R,求证
OQ
OR
>4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c是内角A,B,C的对边,且a2+b2-c2-ab=0.
(1)求角C;
(2)设f(x)=sinx+
3
cosx,求f(A)的最大值,并确定此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)下列命题中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)如图,设AB、A′B′分别是圆O:x2+y2=a2和椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的弦,端点A与A′、B与B′的横坐标分别相等,纵坐标分别同号.
(Ⅰ)若椭圆C的短轴长为2,离心率为
3
2
,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,若弦AB过定点M(0,
3
2
)
,试探究弦A′B′是否也必过某个定点.

查看答案和解析>>

同步练习册答案