精英家教网 > 高中数学 > 题目详情
7.设离散型随机变量ξ的概率分布列为
ξ-10123
P$\frac{1}{10}$$\frac{1}{5}$$\frac{1}{10}$$\frac{1}{5}$$\frac{2}{5}$
则下列各式成立的是(  )
A.P(ξ<3)=$\frac{2}{5}$B.P(ξ>1)=$\frac{4}{5}$C.P(2<ξ<4)=$\frac{2}{5}$D.P(ξ<0.5)=0

分析 利用离散型随机变量ξ的概率分布列的性质直接求解.

解答 解:由离散型随机变量ξ的概率分布列得:
P(ξ<3)=P(ξ=-1)+P(ξ=0)+P(ξ=1)+P(ξ=2)=$\frac{1}{10}+\frac{1}{5}+\frac{1}{10}+\frac{1}{5}$=$\frac{3}{5}$,故A错误;
P(ξ>1)=P(ξ=2)+P(ξ=3)=$\frac{1}{5}+\frac{2}{5}$=$\frac{3}{5}$,故B错误;
P(2<ξ<4)=P(ξ=3)=$\frac{2}{5}$,故C正确;
P(ξ<0.5)=P(ξ=-1)+P(ξ=0)=$\frac{1}{10}+\frac{1}{5}=\frac{3}{10}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的分布列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{\begin{array}{l}{x+2y-2≥0}\\{x≤2}\\{y≤1}\end{array}\right.$,则z=2x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若a:b:c=1:2:$\sqrt{6}$,则最大角的余弦值等于(  )
A.$\frac{1}{5}$B.$\frac{5}{9}$C.-$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\sqrt{1+sin6°}$-$\sqrt{2+2cos6°}$化简的结果为(  )
A.-sin3°+cos3°B.-sin3°+3cos3°C.sin3°-cos3°D.-sin3°-3cos3°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F为抛物线y2=ax(a>0)的焦点,M点的坐标为(4,0),过点F作斜率为k1的直线与抛物线交于A,B两点,延长AM,BM交抛物线于C,D两点,设直线CD的斜率为k2,且k1=$\sqrt{2}$k2,则a=(  )
A.8B.8$\sqrt{2}$C.16D.16$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某赛季甲队每场比赛平均失球数是1.5,失球个数的标准差为1.1;乙队每场比赛平均失球数是2.1,失球个数的标准差为0.4.下列说法中,错误的是(  )
A.平均说来甲队比乙队防守技术好
B.甲队比乙队技术水平更稳定
C.甲队有时表现比较差,有时表现又比较好
D.乙队很少不失球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数导数:
(1)f(x)=lnx-x;
(2)f(x)=xex
(3)f(x)=$\frac{2x}{{e}^{x}}$;
(4)f(x)=$\frac{x}{lnx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用秦九韶算法计算函数f(x)=2x6-3x4+2x3+7x2+6x+3,求x=2时函数值,则V2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+2|-|x+a|
(1)当a=3时,解不等式f(x)≤$\frac{1}{2}$;
(2)若关于x的不等式f(x)≤a解集为R,求a的取值范围.

查看答案和解析>>

同步练习册答案