精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=|x+2|-|x+a|
(1)当a=3时,解不等式f(x)≤$\frac{1}{2}$;
(2)若关于x的不等式f(x)≤a解集为R,求a的取值范围.

分析 (1)将a=1代入f(x),得到关于f(x)的分段函数,求出不等式的解集即可;(2)求出f(x)的最大值,得到|a-2|≤a,解出即可.

解答 解:(1)当a=3时,f(x)=|x+2|-|x+3|,
$f(x)≤\frac{1}{2}$$|{x+2}|-|{x+3}|≤\frac{1}{2}$$\left\{{\begin{array}{l}{x≤-3}\\{-({x+2})+({x+3})≤\frac{1}{2}}\end{array}}\right.$
或$\left\{{\begin{array}{l}{-3<x<-2}\\{-({x+2})-({x+3})≤\frac{1}{2}}\end{array}}\right.$
或 $\left\{{\begin{array}{l}{x≥-2}\\{({x+2})-({x+3})≤\frac{1}{2}}\end{array}}\right.$,
即$\left\{{\begin{array}{l}{x≤-3}\\{1≤\frac{1}{2}}\end{array}}\right.$或 $\left\{{\begin{array}{l}{-3<x<-2}\\{x≥-\frac{11}{4}}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥-2}\\{-1≤\frac{1}{2}}\end{array}}\right.$φ或$-\frac{11}{4}≤x<-2$或x≥-2,
故不等式的解集为:$\left\{{x\left|{x≥-\frac{11}{4}\left.{\;}\right\}}\right.}\right.$;                              
(2)由x的不等式f(x)≤a解集为R,
得函数f(x)max≤a,
∵||x+2|-|x+a||≤|(x+2)-(x+a)|=|2-a|=|a-2|(当且仅当(x+2)(x+a)≥0取“=”)
∴|a-2|≤a,
∴$\left\{{\begin{array}{l}{a≤2}\\{-(a-2)≤a}\end{array}}\right.$或$\left\{{\begin{array}{l}{a>2}\\{a-2≤a}\end{array}}\right.$,
解得:a≥1.

点评 本题考查了解绝对值不等式问题,考查求函数的最大值,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设离散型随机变量ξ的概率分布列为
ξ-10123
P$\frac{1}{10}$$\frac{1}{5}$$\frac{1}{10}$$\frac{1}{5}$$\frac{2}{5}$
则下列各式成立的是(  )
A.P(ξ<3)=$\frac{2}{5}$B.P(ξ>1)=$\frac{4}{5}$C.P(2<ξ<4)=$\frac{2}{5}$D.P(ξ<0.5)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(1,cosα),$\overrightarrow{b}$=(-2,sinα),且$\overrightarrow{a}$∥$\overrightarrow{b}$.
(1)求tanα的值;
(2)求cos($\frac{π}{2}$+2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知菱形ABCD中,AB=4,∠BAD=60°,将菱形ABCD沿对角线BD翻折,使点C翻折到点C1的位置,点E,F,M分别是AB,DC1,BC1的中点.
(I)求证:AC1⊥BD;
(Ⅱ)当EM=$\sqrt{6}$时,求平面EFM与平面BDC1所成的锐二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-3|.
(Ⅰ)若不等式f(x)-f(x+5)≥|m-1|有解,求实数m的取值范围;
(Ⅱ)若|a|<1,|b|<3,且a≠0,证明:$\frac{{f({ab})}}{|a|}$>f(${\frac{b}{a}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=1nx-$\frac{1}{3}$x3+1的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的单调递增区间.
(1)f(x)=$\sqrt{cos(-2x)}$;                                        
(2)y=-2cos(2x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系xOy中,随机地从不等式组$\left\{\begin{array}{l}|x|≤2\\|y|≤2\end{array}$表示的平面区域Ω中取一个点P,如果点P恰好在不等式组$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}≥0}\\{|x|≤m}\end{array}\right.$(m>0)表示的平面区域的概率为$\frac{1}{8}$,则实 数m的值为(  )
A.3B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.经测定某点处的光照强度与光的强度成正比,与到光源距离的平方成反比,比例常数为k(k>0),现已知相距3m的A,B两光源的光的强度分别为a,b,它们连线上任意一点C(异于A,B)处的光照强度y等于两光源对该处光源强度之和,设AC=x(m),已知x=1时点C处的光照强度是$\frac{33k}{4}$,x=2时点C处的光照强度是3k.
(1)试将y表示为x的函数,并给出函数的定义域;
(2)问AB连线上何处光照强度最小,并求出最小值.

查看答案和解析>>

同步练习册答案