精英家教网 > 高中数学 > 题目详情
18.函数f(x)=sinx+3x的导函数f′(x)=cosx+3xln3.

分析 根据导数的运算法则求导即可.

解答 解:函数f(x)=sinx+3x的导函数f′(x)=cosx+3xln3,
故答案为:cosx+3xln3.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在极坐标系中,已知曲线C的方程为$ρ=\frac{4cosθ}{{{{sin}^2}θ}}$,直线l的直角坐标方程为x-y+1=0,则直线l与曲线C的位置关系为(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=$\frac{π}{4}$,则|cosA一cosC|的值为(  )
A.$\root{4}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\root{4}{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,则该几何体的表面积等于7π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,已知A(3,4),B(5,-12),O为坐标原点,∠AOB的平分线交线段AB于点D,则点D的坐标为($\frac{32}{9},-\frac{4}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.中心在原点,对称轴为坐标轴,离心率为2,实轴长为4的双曲线方程为$\frac{x^2}{4}-\frac{y^2}{12}=1$或$\frac{y^2}{4}-\frac{x^2}{12}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P(-1,2)到直线8x-6y+15=0的距离为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知倾斜角为α的直线l与直线x+2y-3=0垂直,则cos($\frac{2015π}{2}$+2α)的值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知曲线f(x)=x•lnx在点(1,f(1))处的切线与曲线y=x2+a相切,则a=-$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案