分析 先求出AO,BO直线的斜率,利用夹角公式求出DO的斜率,设出DO的直线方程与AB直线方程求解,得到D坐标.
解答 解:已知A(3,4),B(5,-12),O为坐标原点,AB的直线方程为:8x+y-28=0
∴k${\;}_{OA}=\frac{4}{3}$,${k}_{OB}=-\frac{12}{5}$,
设DO的直线方程斜率为kOD
∵点D在∠AOB的平分线上,
∴∠AOD=∠DOB
利用夹角公式,可得:$|\frac{{k}_{OD}-{k}_{OB}}{1+{k}_{OD}{k}_{OB}}|=|\frac{{k}_{OA}-{k}_{OD}}{1+{k}_{OD}{k}_{OD}}|$
⇒$|\frac{{k}_{OD+\frac{12}{5}}}{1-\frac{12}{5}{k}_{OD}}|=|\frac{\frac{4}{3}-{k}_{OD}}{1+\frac{4}{3}{k}_{OD}}|$
解得:${k}_{OD}=-\frac{1}{8}$
那么:DO的直线方程为:y=$-\frac{1}{8}x$
D是直线AB与OD的交点:
联立:$\left\{\begin{array}{l}{y=-\frac{1}{8}}\\{8x+y-28=0}\end{array}\right.$
解得:$\left\{\begin{array}{l}{x=\frac{32}{9}}\\{y=-\frac{4}{9}}\end{array}\right.$
故答案为:$(\frac{32}{9},-\frac{4}{9})$.
点评 本题考查了直线方程的求法及交点,直线的斜率,夹角问题,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 | B. | 内心 | C. | 外心 | D. | 垂心 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com