精英家教网 > 高中数学 > 题目详情

已知数列是一个等差数列且,,
(1)求通项公式;
(2)求的前项和的最小值.

(1)(2) 当时,取得最小值.

解析试题分析:
根据等差数列前项和公式展开题中所给条件,可得首项与公差,即可得到数列的通项公式.
(2)法一:根据等差数列前项和公式,将转化为关于的二次函数,并讨论其最小值;
法二:根据(1)可知,该数列是首项为负,公差为正的递增数列,所以其前项和先递减后递增,当中的取最大值时,前项和最小.
(1)设的首项为,公差为,则根据等差数列前项和公式有
,            
        
        
(2)法一: ,
时,取得最小值
法二:由,得, 
时,取得最小值
考点:等差数列前项和公式及其最值的讨论,通项公式;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是一个公差大于0的等差数列,且满足.
(1)求数列的通项公式;
(2)若数列和数列满足等式:(n为正整数)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·杭州模拟)已知数列{an}的前n项和Sn=-ann-1+2(n∈N*),数列{bn}满足bn=2nan
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.
(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn
(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,前项和满足条件
(1)求数列的通项公式和;(2)记,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn
(1) 若当n=10时,Sn取到最小值,求的取值范围;
(2) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都为正数,
(1)若数列是首项为1,公差为的等差数列,求
(2)若,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,.令,数列的前项和为.
(1)求数列的通项公式和
(2)是否存在正整数),使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{ }的前n项和为Sn,且S4=4S2
(1)求数列{}的通项公式;
(2)设数列{ }满足,求{}的前n项和Tn
(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是等差数列,满足,数列满足,且是等比数列.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

同步练习册答案