设等差数列{ }的前n项和为Sn,且S4=4S2,.
(1)求数列{}的通项公式;
(2)设数列{ }满足,求{}的前n项和Tn;
(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.
(1)an=2n﹣1,n∈N*;(2);(3).
解析试题分析:(1)由于{an}是等差数列,故只需求出其首项a1和公差d即可得其通项公式.由S4=4S2,a2n=2an+1得方程组:,这个方程组中,看起来有3个未知数,但n抵消了(如果n不能抵消,则左右两边对应系数相等),故实质上只有两个未知数.解这个方程组即可(也可以取n=2).(2)首先求出{bn}的通项公式. 已知求,则.在本题中,由已知可得:当n≥2时,,显然,n=1时符合.由(1)得,an=2n﹣1,n∈N*.从而,n∈N*.这个数列用错位相消法便可求得其和.(3)Tn恒成立,则.为了求,需要研究的单调性,为了研究的单调性,需考查的符号.
试题解析:(1)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得:,
解得a1=1,d=2.
∴an=2n﹣1,n∈N*.(2)由已知,得:
当n=1时,,
当n≥2时,,显然,n=1时符合.
∴,n∈N*,由(1)知,an=2n﹣1,n∈N*.∴,n∈N*.
又,∴,
两式相减得:
所以.
(3),
所以单调递增,
所以,
所以.
考点:1、等差数列与等比数列;2、数列的和;3、数列与不等式.
科目:高中数学 来源: 题型:解答题
数列中各项为正数,为其前n项和,对任意,总有成等差数列.
(1)求数列的通项公式;
(2)是否存在最大正整数p,使得命题“,”是真命题?若存在,求出p;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an},其前n项和为Sn.
(1)若对任意的n∈N,a2n-1,a2n+1,a2n组成公差为4的等差数列,且a1=1,=2013,求n的值;
(2)若数列是公比为q(q≠-1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为q=1+.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com