精英家教网 > 高中数学 > 题目详情

数列中各项为正数,为其前n项和,对任意,总有成等差数列.
(1)求数列的通项公式;
(2)是否存在最大正整数p,使得命题“”是真命题?若存在,求出p;若不存在,请说明理由.

(1);(2)详见解析.

解析试题分析:(1)根据是等差数列,得到,当时,两式相减整理得到关于数列的递推公式,可以知道数列是等差数列,利用求出首项;
(2)第一种方法就是首先假设存在正整数,满足,利用代入得成立即中的最大整数,设,,利用导数易知函数的单调性,易求函数的最小值,
第二种方法设函数,求其导数,得到函数是单调递增函数,其最大值小于0,求出p的范围.
试题解析:(1)由已知时,,∴
两式相减,得     ∴
为正数,∴.           4分
是公差为1的等差数列.
时,,得,∴.   6分
(2)解法1:假设存在正整数p,满足,即.
                                 8分
设函数,则.
时,,∴在[1,+∞)上为增函数.
,即有.
∵p为满足的最大正整数,而,故.   12分
解法2:设

在[1,+∞)上为减函数,             9分
.
. ∵
故使成立的最大正整数.   12分
考点:1.已知;2.利用函数的导数求其最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是一个公差大于0的等差数列,且满足.
(1)求数列的通项公式;
(2)若数列和数列满足等式:(n为正整数)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都为正数,
(1)若数列是首项为1,公差为的等差数列,求
(2)若,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,.令,数列的前项和为.
(1)求数列的通项公式和
(2)是否存在正整数),使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中, (为常数,)且成公比不等于1的等比数列.
(1)求的值;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公比不为的等比数列的首项,前项和为,且成等差数列.
(1)求等比数列的通项公式;
(2)对,在之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是首项为,公差为的等差数列(d≠0),是其前项和.记bn=,
,其中为实数.
(1) 若,且成等比数列,证明:Snk=n2Sk(k,n∈N+);
(2) 若是等差数列,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{ }的前n项和为Sn,且S4=4S2
(1)求数列{}的通项公式;
(2)设数列{ }满足,求{}的前n项和Tn
(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且.
(1)求数列的通项公式;
(2)令,求数列的前项和.

查看答案和解析>>

同步练习册答案