精英家教网 > 高中数学 > 题目详情
关于x的方程2ax-a+1=0在区间(-1,1)内有实数根,则实数a的组成的集合是(  )
A、{a∈R|-1<a<
1
3
}
B、{a∈R|a>
1
3
}
C、{a∈R|a<-1或a>
1
3
}
D、{a∈R|a<-1}
分析:本题考查的是函数的零点问题.在解答时,可以先考虑方程对应的一次函数,结合函数图象特点以及零点存在性知识,即可后的满足题意的不等关系,由此可以获得问题的解答.
解答:解:由题意:设f(x)=2ax-a+1且知a≠0,
又因为关于x的方程2ax-a+1=0在区间(-1,1)内有实数根,
即函数在区间(-1,1)内有零点,∴f(-1)•f(1)<0,
∴(-3a+1)•(a+1)<0,
∴(3a-1)•(a+1)>0,
∴a>
1
3
或a<-1.
故选C.
点评:此题考查的是函数的零点问题.在解答的过程当中充分体现了函数与方程的思想、数形结合的思想以及问题转化的思想.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2bxc.x0满足关于x的方程2axb=0,则下列选项的命题中为假命题的是                                                                    (  )

A.∃x∈R,f(x)≤f(x0)              B.∃x∈R,f(x)≥f(x0)

C.∀x∈R,f(x)≤f(x0)              D.∀x∈R,f(x)≥f(x0)

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练15练习卷(解析版) 题型:选择题

已知a>0,函数f(x)=ax2+bx+c,x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )

(A)?xR,f(x)f(x0) (B)?xR,f(x)f(x0)

(C)?xR,f(x)f(x0) (D)?xR,f(x)f(x0)

 

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省哈尔滨三中高考数学一模试卷(文科)(解析版) 题型:选择题

已知a>0,函数f(x)=ax2+bx+c,若x满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是( )
A.?x∈R,f(x)≤f(x
B.?x∈R,f(x)≥f(x
C.?x∈R,f(x)≤f(x
D.?x∈R,f(x)≥f(x

查看答案和解析>>

同步练习册答案