分析 (1)设Q是AD的中点,连接PQ,BQ,通过证明AD⊥平面PBQ,证出AD⊥PB;
(2)利用等体积法,即可求点C到平面PAB的距离.
解答
(1)证明:∵ABCD是菱形,且∠BAD=60°
∴△ABD是等边三角形
设Q是AD的中点,连接PQ,BQ,则BQ⊥AD,
∵△APD是等边三角形
∴PQ⊥AD,
∵PQ∩BQ=Q,
∴AD⊥平面PBQ,
∴AD⊥PB;
(2)解:△PAB中,PA=AB=2,PB=$\sqrt{6}$,S△PAB=$\frac{1}{2}×\sqrt{6}×\sqrt{4-\frac{3}{2}}$=$\frac{\sqrt{15}}{2}$,
设点C到平面PAB的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}=\frac{1}{3}×\frac{\sqrt{15}}{2}h$,
∴h=$\frac{2\sqrt{5}}{5}$.
点评 本题考查空间直线、平面位置关系的判断,考查点面距离的计算,考查空间想象能力、推理论证、计算、转化能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-y+2=0 | B. | x+y-2=0 | C. | $\sqrt{3}$x-y+2$\sqrt{3}$=0 | D. | $\sqrt{3}$x-y-2$\sqrt{3}$=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}$ | B. | $-\frac{2}{3}$ | C. | 6 | D. | -6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com