【题目】如图所示,在直三棱柱
中,
,
,
,
.
![]()
(1)证明:
平面
;
(2)若
是棱
的中点,在棱
上是否存在一点
,使DE∥平面
?证明你的结论.
科目:高中数学 来源: 题型:
【题目】已知点A(0,﹣2),椭圆E:
=1(a>b>0)的离心率为
,F是椭圆的焦点,直线AF的斜率为
,O为坐标原点.
(Ⅰ)求E的方程;
(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
![]()
(1)本次一共调查了多少名学生.(2)在图(1)中将②对应的部分补充完整.
(3)若该校有3 000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5时以下?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,函数
,若
的图象上相邻两条对称轴的距离为
,图象过点
.
(1)求
表达式和
的单调增区间;
(2)将函数
的图象向右平移
个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,若函数
在区间
上有且只有一个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,上海迪士尼乐园将一三角形地块ABC的一角APQ开辟为游客体验活动区.已知∠A=120°,AB、AC的长度均大于200米.设AP=x,AQ=y,且AP,AQ总长度为200米. ![]()
(1)当x,y为何值时?游客体验活动区APQ的面积最大,并求最大面积;
(2)当x,y为何值时?线段|PQ|最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数
,其中a为常数.
(I)若x=1是函数
的一个极值点,求a的值
(II)若函数
在区间(-1,0)上是增函数,求a的取值范围
(III)若函数
,在x=0处取得最大值,求正数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是
A. 413.7元 B. 513.7元 C. 546.6元 D. 548.7元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
和等比数列
满足
,
,
.
(1)求
的通项公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】试题分析:(1)根据等差数列
的
,
,列出关于首项
、公差
的方程组,解方程组可得
与
的值,从而可得数列
的通项公式;(2)利用已知条件根据题意列出关于首项
,公比
的方程组,解得
、
的值,求出数列
的通项公式,然后利用等比数列求和公式求解即可.
试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
从而
.
【题型】解答题
【结束】
18
【题目】已知命题
:实数
满足
,其中
;命题
:方程
表示双曲线.
(1)若
,且
为真,求实数
的取值范围;
(2)若
是
的充分不必要条件,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com