精英家教网 > 高中数学 > 题目详情
设椭圆的方程为,过右焦点且不与轴垂直的直线与椭圆交于两点,若在椭圆的右准线上存在点,使为正三角形,则椭圆的离心率的取值范围是     
解:设弦PQ的中点为M,过点P、M、Q分别作准线l的垂线,垂足为P'、M'、Q'
则|MM'|=(|PP'|+|QQ'|)=(|PF|+|QF|)= |PQ|
假设存在点R,使△PQR为正三角形,则由|RM|=  |PQ|,且|MM'|<|RM|
得: |PQ|<  |PQ|
∴e>
∴椭圆离心率e的取值范围是
故答案为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.

(Ⅰ)证明:直线与直线的交点在椭圆上;
(Ⅱ)若过点的直线交椭圆于两点,关于轴的对称点(不共线),
问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆 .有相同的离心率,过点的直线,依次交于A,C,D,B四点(如图).当直线的上顶点时, 直线的倾斜角为.

(1)求椭圆的方程;
(2)求证:;
(3)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知圆及定点,点Q是圆A上的动点,点G在BQ上,点P在QA上,且满足=0.
(I)求P点所在的曲线C的方程;
(II)过点B的直线与曲线C交于M、N两点,直线与y轴交于E点,若为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的左、右焦点,若为椭圆上一点,且△的内切圆的周长等于,则满足条件的点
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab为大于1的正数,并且,如果的最小值为m,则满足的整点的个数为                                   (    )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在轴上的椭圆的离心率为,则等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左右焦点分别为,线段被抛物线的焦点分成5:3两段,则此椭圆的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案