精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.SD=2DC=2
(1)证明EF∥平面SAD;
(2)求EF与平面ABCD成角的大小.
(3)求四面体F-ABC的体积.
分析:(1)取SD的中点G,通过证明四边形AEFG为平行四边形,证明AG∥EF,再由线线平行证明线面平行;
(2)取CD的中点O,可证FO⊥平面ABCD,证明∠FEO为线面角,再解三角形求得;
(3)由(2)FO为四棱锥的高,底面是边长为1的正方形,代入公式计算求得.
解答:解:(1)分别取CD、SD的中点O、G,连接FG、AG,OF,
∵E,F分别为AB,SC的中点,∴FG∥OD∥AE,FG=DO=AE,
∴四边形AEFG为平行四边形,∴EF∥AG,
又EF?平面SAD,AG?平面SAD,
∴EF∥平面SAD.精英家教网
(2)∵O、F分别是SC、DC的中点,∴FO∥SD,FO=
1
2
SD=1,
∵SD⊥平面ABCD,∴FO⊥平面ABCD,∴EO为EF在平面ABCD中的射影,
∴∠FEO为直线EF与平面ABCD所成的角,
在Rt△EFO中,OE=AD=1,tan∠FEO=
FO
EO
=1,
∴EF与平面ABCD所成的角为
π
4

(3)∵底面ABCD为正方形,FO⊥平面ABCD,FO=1,
∴VF-ABCD=
1
3
×1×1=
1
3
点评:本题考查了线面平行的判定,直线与平面所成角的定义及求法,考查了棱锥的体积公式,考查了学生的空间想象能力与推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E为SD的中点.
(1)若F为底面BC边上的一点,且BF=
1
6
BC
,求证:EF∥平面SAB;
(2)底面BC边上是否存在一点G,使得二面角S-DG-A的正切值为
2
?若存在,求出G点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.
(1)证明EF∥平面SAD;
(2)设SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.底面ABCD为矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求证:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步练习册答案