精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数f(x)的对称轴方程;
(2)当数学公式时,若函数g(x)=f(x)+m有零点,求m的范围;
(3)若数学公式数学公式,求sin(2x0)的值.

解:(1)∵f(x)=sin2x+cos2x+2=2sin(2x+)+2(3分)
令2x+可得:
∴对称轴方程为:,.(4分)
(2)∵ 2x+

(7分)
∵函数g(x)=f(x)+m有零点,即f(x)=-m有解.(8分)
即-m,m.(9分)
(3)即2sin(+2=即sin(=(10分)


又∵
(11分)
(12分)
(13分)
=
=
=(15分)
分析:利用辅助角公式可得f(x)=sin2x+cos2x+2=2sin(2x+)+2
(1)令2x+可得对称轴方程为:
(2)由可得2x+,从而可得∴
而函数g(x)=f(x)+m有零点,即f(x)=-m有解,可转化为y=f(x)与y=-m有交点,结合图象可得-m
m
(3)由已知可得,结合可求,而利用两角差的正弦公式可求
点评:本题主要考查 了辅助角公式asix+bcosx=的应用,正弦函数的对称轴的求解,方程与函数的相互转化,利用拆角求解三角函数值,是一道综合性比较好的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象和y轴交于(0,1)且y轴右侧的第一个最大值、最小值点分别为P(x0,2)和Q(x0+3π,-2).
(1)求函数y=f(x)的解析式及x0
(2)求函数y=f(x)的单调递减区间;
(3)如果将y=f(x)图象上所有点的横坐标缩短到原来的
1
3
(纵坐标不变),然后再将所得图象沿x轴负方向平移
π
3
个单位,最后将y=f(x)图象上所有点的纵坐标缩短到原来的
1
2
(横坐标不变)得到函数y=g(x)的图象,写出函数y=g(x)的解析式并给出y=|g(x)|的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
时取得最大值4.
(1)求函数f(x)的最小正周期及解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 (1)求函数在区间[1,]上的最大值、最小值;

(2)求证:在区间(1,)上,函数图象在函数图象的下方;

(3)设函数,求证:。(

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省仙桃一中高三(上)第二次段考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期和最小值;
(2)在给出的直角坐标系中,用描点法画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省枣庄市高三上学期期末检测理科数学 题型:解答题

(本题满分12分)

已知函数

(1)求函数的极值点;

(2)若直线过点(0,—1),并且与曲线相切,求直线的方程;

(3)设函数,其中,求函数上的最小值.(其中e为自然对数的底数)

 

 

查看答案和解析>>

同步练习册答案