精英家教网 > 高中数学 > 题目详情
8.(1)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$;
(2)${2^{2+{{log}_2}5}}-{2^{{{log}_2}3{{log}_3}5}}$.

分析 (1)直接利用有理指数幂的运算法则化简求解即可.
(2)利用对数的运算法则化简求解即可.

解答 解:(1)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$
=0.4-1-1+23+0.5
=2.5-1+8+0.5
=10;
(2)${2^{2+{{log}_2}5}}-{2^{{{log}_2}3{{log}_3}5}}$
=${2}^{2+{log}_{2}5}-{2}^{{log}_{2}{3}^{{log}_{3}5}}$
=4×5-5=15.

点评 本题考查指数与对数的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知圆x2+y2-2x-4y+a-6=0上有且仅有两个点到直线3x-4y-15=0的距离为1,则实数a的取值范围是(  )
A.(-6,7)B.(-15,1)C.(-14,2)D.(-8,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)对于任意x∈R,不等式2x2-a$\sqrt{{x}^{2}+1}$+3>0恒成立,求实数a的取值范围;
(2)己知不等式(x+y)($\frac{1}{x}$$+\frac{a}{y}$)≥9对任意正实数x,y恒成立,求正实数a的最小值;
(3)若关于x的方程4x+a•2x+a+1=0有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)是定义在[-4,+∞)上的增函数,对?x∈R,总有f(cosx-b2)≥f(sin2x-b-3)恒成立,求实数b的取值范围[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,以ox为始边作角α与β(0<β<α<π),它们的终边 分别与单位圆相交于点A、B.已知点A的坐标为(-$\frac{3}{5}$,$\frac{4}{5}$).
 (1)求 $\frac{sinα+tan(π-α)}{2tan(\frac{3π}{2}-α)co{s}^{2}(\frac{3π}{2}-α)}$的值:
(2)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求sin(β+$\frac{11π}{2}$)sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f:A→B是从集合A到集合B的映射,其中A=B={(x,y)|x∈R,y∈R},f(x,y)→(x+y,x-y).那么A中元素(1,3)的象是(4,-2);B中元素(1,3)的原象是(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2015年我国将加快阶梯水价的推行,原则是“保基本、建机制、促节约”,其中“保基本是指保证至少80%的居民用户用水价格不变,为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如图(单位:吨).
(1)从郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;
(2)设该城市郊区与城区的居民户数比为1:5,现将年人均用水量不超过30吨的用户定为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变,试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,且,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,则向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$,则|z|等于(  )
A.1B.-1C.iD.4

查看答案和解析>>

同步练习册答案